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I. Rupture instability is a very interesting and important physical phenomenon 
which has been intensively studied in recent years (see, e.g., [i]). The development of this 
instability is affected by a series of different physical factors. Plasma flow along the cur- 
rent layer and the component of the magnetic field normal to the layer are significant [2]. 
The stability of the current layer is affected by the nonuniformity of the density and con- 
ductivity, as well as by transport of the conductivity together with the motion of the medium 
(convection conductivity). 

One of the important factors is ionic viscosity, which can significantly affect the tear- 
ing mode. An attempt to evaluate the effect of ionic viscosity was first made in [3]. The 
effect of ionic viscosity on the stability of the diffusion pinch and the parallel viscosity 
and compressibility factors were studied in [4-8]. The asymptotic method and the solution in 
[3], used with some modifications in [4-8] also, involve heuristic elements already in the 
case of infinitesimal ionic viscosity. The asymptotic theory does not permit studying the 
case of "moderate" magnetic Reynolds numbers R , which are characteristic for the experiment. 

�9 . . m 

In the presence of flnlte lonic viscosity, addltional complications appear in connection with, 
in particular, the increase in the order of the system of differential equations. 

A correct study of the instability of the tearing mode can be performed using the methods 
of the theory of stability of flows of viscous liquids. Analytic methods of the theory of hy- 
drodynamic stability were used in [9, i0] to solve a number of problems concerning the plasma 
stability, where it was pointed out that the processes occurring in the development of insta- 
bility in a plasma and in an ordinary liquid are similar [9]. In [ii] numerical methods of the 
theory of hydrodynamic stability were used to study the Alfven oscillations of an inhomogeneous 
plasma in the presence of a beam of fast ions. 

We draw attention to the analogy between the instability of the tearing mode and the 
magnetic branch of the instability of the Hartman flow, discovered previously by one of the 
authors [12]. This analogy permits using the computational algorithms in [12, 13] to study 
the tearing mode. The numerical experiments performed give a detailed picture of the effect 
of ionic viscosity on the stability of the current layer. 

The simplest model of a current layer is a one-dimensional static configuration of a plas- 
ma and a magentic field, studied in the MHD appproximation [3]. In this work, we study in the 
MHD approximation the stability of a flat current layer of a collisional plasma, bounded by 
well-conducting impenetrable plates at y = • The magnetic field is oriented along the x 
axis and its sign changes on the neutral plane y = 0. This magnetic field is maintained by 
the current flowing along the z axis. 

It is convenient to use dimensionless notation. For the scale length we use the half- 
width of the channel, for the density scale we use the density no along the channel axis y = 
0; for the velocity scale we use the Alfven velocity Vo = Bo/4~nom i, calculated using the 
field scale Bo and the density scale no (m. is the mass of the ions). 

1 

Let the magnetic field have the form [3] 

U(y) = th py. (i. i) 

The quantity p characterizes the rate of change of the magnetic field near the zero line (in 
the dimensional form the field B = Bo tanh (y/a), and in addition p = Lo/a). Following [2, 3], 
we choose the density profile in the form 

n(y) = I/ch 2 py. (i. 2) 
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We shall first assume that the ions in the plasma are not magnetized. The viscosity of 
the plasma can then be assumed to be isotropic. This is valid if [i, 13] 

(miT~) ~ = (4.16. I022/AZ4%2)(B~ l)~(T[eV ])3/(n~m-a])2 << t .  

T h i s  i n e q u a l i t y  i s  u s u a l l y  s a t i s f i e d  in  e x p e r i m e n t a l  s e t u p s ,  u s e d  to  s t u d y  a c u r r e n t  l a y e r  
( s e e ,  e . g . ,  [ 1 ] ) .  The p l a s m a  t e m p e r a t u r e  i n  such  s e t u p s  i s  c h a r a c t e r i s t i c s l l y  o f  t h e  o r d e r  
of  s e v e r a l  t e n s  of  e l e c t r o n  v o l t s  B ~ 10 a G , n  - 10~5-10 ~s cm -3  ( h e l i u m  and a r g o n  p l a s m a s  
a r e  o f t e n  u s e d ) .  I n  s t r o n g e r  m a g n e t i c  f i e l d s  and  a t  h i g h e r  t e m p e r a t u r e s ,  t h e  v i s c o s i t y  of  
t h e  p l a s m a  i s  d e t e r m i n e d  by  t e n s o r  q u a n t i t i e s .  Fo r  T > 100 eV t h e  f i e l d - a l i g n e d  i o n i c  v i s -  
c o s i t y  p l a y s  a s u b s t a n t i a l  r o l e  [ 4 ] ,  and t h e  t r a n s p o r t  o f  momentum a c r o s s  t h e  m a g n e t i c  f i e l d  
i s  h i n d e r e d  f o r  s u f f i c i e n t l y  l a r g e  v a l u e s  o f  B. 

Us ing  t h e  r e s u l t s  of  [ 3 ] ,  we e s t i m a t e  t h e  m a g n e t i z a t i o n  f a c t o r ,  t a k i n g  i n t o  a c c o u n t  t h e  
d e c r e a s e  i n  t h e  c o e f f i c i e n t  o f  v i s c o s i t y  i n  a m a g n e t i c  f i e l d  w i t h i n  t h e  f r amework  o f  t h e  i s o -  
t r o p i c - v i s c o s i t y  m o d e l .  I n  t h i s  c a s e ,  i n  p a r t i c u l a r ,  t h e  f a c t  t h a t  t h e  f i e l d - a l i g n e d  momen- 
tum i s  t r a n s p o r t e d  a l o n g  t h e  m a g n e t i c  f i e l d  f r e e l y  i s  i g n o r e d .  I t  i s  t h e r e f o r e  r e a s o n a b l e  
to  u s e  t h e  t r a n s v e r s e  v i s c o s i t y  u n t i l  t h e  f i e l d - a l i g n e d  v i s c o s i t y  becomes  q u i t e  l a r g e .  An 
e x a c t  a n a l y s i s  o f  t h e  e f f e c t  o f  i o n i c  v i s c o s i t y  mus t  be  p e r f o r m e d  t a k i n g  i n t o  a c c o u n t  t h e  com- 
p l e t e  v i s c o u s  s t r e s s  t e n s o r  o f  t h e  p l a s m a  i n  m a g n e t i c  f i e l d .  T h i s ,  h o w e v e r ,  i s  a v e r y  c o m p l i -  
c a t e d  p r o b l e m  and has  n o t  y e t  been  s t u d i e d .  

The l i n e a r  s t a b i l i t y  o f  t h e  c u r r e n t  l a y e r  a t  r e s t  w i t h i n  t h e  f r amework  o f  t h e  model  s t u d -  
ied will be determined by the following eigenvalue problem: 

n(y) v (y) vi  v + C [ (nv ' ) '  - -  k2nv] = - -  U (h" - -  k~h) + U"h, 
ikStt  

h" ; - + v + v '  (0) 

v (4-_ t )  = O, h(-+- t )  = O. 

(1.3) 

Here v and h are the y components of the complex amplitudes of the velocity and field pertur- 
bations;k is the wave number; C = X + iY is the complex phase velocity; ~ = kY~ is the incre- 
ment (the perturbations grow, if Y > 0); R = VoLo/vo is Reynolds' number, calculated based on 
the magnitude of the kinematic viscosity vo; R m is the magnetic Reynolds number determined 
from the magnitude Of the electrical conductivity at y = 0; 6 is the cosine of the angle be- 
tween the x axis and the wave vector; and, v(y) is the profile of the kinematic viscosity. 
The prime indicates differentiation with respect to y. In exactly the same manner as in [3], 
only the viscous term with the highest-order derivative is retained in Eq. (1.3). 

According to [3], the profile of the kinematic viscosity can be taken in the form 

v(y) = t/(1 : +  ~U2) ,  (1.4) 

where ~ is the magnetization parameter of the plasma. With low magnetization (~ << i) the 
quantity w can be assumed to be approximately constant and equal to one. In the case of large 
magnetization the viscosity decreases rapidly from the center of the layer to the walls. 

Generalizing the well-known result of [3] to the case of a finite ionic viscosity, we 

find for v ~ 1 from Eqs. (1.3) the integral relation 

-1 - -  ilCl~N ICl~ +k2nlvl~)+lu"/u+~n~cv'l~ (1 .5 )  

+ (kZ+ UUU)h, 2 ,h'l ~-(k~+ ~-)lh.]2}dy=O, ~==k~R=/U ' (0 ) ,  

= k 6 R .  

Taking the imaginary part of this relation, we arrive at the conclusion that even when the 

ionic viscosity is taken into account the oscillating perturbations can only decay. We shall 
study further the real part of (1.5). Determining IU"/UI on the segment --i, +i, we conclude 
that for k > /2p the monotonic perturbations (x = 0) can only decay. The numerical experiments 
performed show that even in the case of variable viscosity there are no growing oscillatory 

modes and a short-wavelength limit of the instability exists. 

The increments of the monotonic perturbations are found from the following eigenvalue 

problem: 
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v('~) V TM Y" k ~ RY + = - - L V '  + [k 2 + (k~R=U~a/r,y) + UK/nY]V + ( U " / n Y -  kgR~c~U/n)h; (1.6) 

h" = --(k6RmU 0 + K)V + (k 2 + kfRmYo)h , (1.7) 

o(y) = U'(y)/U'(O), L(y) = n'(y)/n(y), g(y) = --U"(y)/Y; 

h(+_O = O, V(+_l )  = O, v ' ( _ + l )  = o. ( 1 . 8 )  

Here V = iv. The distribution of the conductivity is given by the function o(y). The 
quantity L characterized the nonuniformity of the density. Transport of conductivity together 
with the motion of the medium is taken into account with the help of the function K(y). 

In the standard asymptotic theory it is assumed that n z I, L ~ 0, K ~ 0. In a narrow 
internal region of width r near the zero line it is assumed that J ~ ], v s 1 (such a layer is 
said to be singular). In the outer region the finite electrical resistance, the ionic viscos- 
ity, and inertia are neglected. The perturbations are assumed to be two-dimensional (~ = I) 
and their wavelengths are assumed to be long (k << I). To lower the order of the system (1.6), 
the following estimate is used: V IV'~ VII/a2. In addition, conditions under which the term 
V II can be neglected in the first equation (1.6) are studied. These assumptions enable study- 

ing essentially only qualitatively the effect of ionic viscosity for large R and Rm. It is 
established in [3] that for sufficiently large R m the ionic viscosity decreases the growth 
increments. It is, however, difficult to evaluate reliably the degree of this effect from 
the results of [3]. A more accurate result is obtained in [3, 15] for large R m and R § ~. 
According to [3, 14], for the profile of the field (i.i) 

r r ( l / 4 ) , f _  ]4/a ? = Ak 2/5 R~3/5, A = [ ~  g p a j ,  

A=2p2 pthp' <<i, kB~>>i, p>i,2, R-~oo. 

2. We shall establish the simplest properties of the problem (1.6)-(1.8), restricting 
our analysis to two-dimensional perturbations (6 = i). 

For small k the quantity Y depends on the complexes kR and kRm, and the expression for 
the increment has the form 

? = kY(p, kRm, kR), k < < i .  (2.1)  

It is evident from the formula (2ol) that if the numerical calculations are performed for 
fixed R and R m in a sufficiently wide region of k << i, then they determine the magnitude of 
the increments in the entire range of values of R m and R. 

We denote by y, the largest increment for given p, Rm, and R. From the system (1.6)-(1.8) 
it is easy to obtain for small Rm, kR the following asymptotic dependence: 

m 
?~ =/(p, R), R . - +  0., (2.2) 

The function f(p, R) can be determined only by numerical analysis. 

For small k in the system of equations (1.6)-(1.8) terms of order ~k s can be neglected. 

For this reason, for fixed p, Rm, R we have the asymptotic dependence 

Y--~constas k--~0, y--~constk as k - + 0 .  (2.3) 

If the nonuniformity and convection factors are neglected, then instead of (2.3) we find 

Y , v k R m  as k.-~O, y~-.k2Rm as k--~-O. (2.4)  

The asymptotic dependences (2.1)-(2.4) and the short-wavelength boundary of the instabil- 
ity restrict the region of numerical analysis to a definite range of wave numbers. 

In order that the lines of force reconnect, separate elements of the plasma near the zero 
line of the field must move toward one another, i.e., the function v(y) must be odd (in the 
case of an odd field profile). The field perturbations must in this case be even functions. 
The boundary conditions for such perturbations have the form 

~(0) = o~ h'(0) = 0, v(t)  = 0, h(~) : 0.  ( 2 . 5 )  
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We shall study qualitatively the effect of the nonuniformity and convection of the con- 
ductivity. 

In accordance with the model of a singular layer, the behavior of the perturbations with 
large values of kR , kR is determined, first of all, by the distribution of the magnetic field 
throughout the entlre thickness of the current layer and, second, by the local characteristics 
of the current layer near y = 0. For this reason, the nonuniformity factors, the magnetization 
parameter, and the convection parameter must not significantly affect the magnitude of the in- 
crements of such perturbations (near the axis of the layer, according to (1.4) and (1.7), v, 

n, ~ ~ i, L = K = 0). 

The behavior of the perturbations for "moderate" values of R m is determined only by the 
integral characteristics of the current layer. The effect of the nonuniformity of the conduc- 
tivity has approximately the same significance for such perturbations as does a definite de- 
crease in the value of R m. 

The drop in the density from the center to the walls of the channel, e.g., following the 
law (1.2), enables neglecting the inertia in the outer region�9 For this reason, when the 
density nonuniformity is taken into account, the correspondence with the asymptotic theory 

for large R and R [3, 15] should improve. The nonuniformity factor will in this case have a 
�9 ~ 0 definite destablllzlng effect. For moderate values of R and Rm, this factor can have a differ- 

ent effect. 

Elements of the medium moving toward the zero line decrease the conductivity in the vi- 
cinity of this line, thereby easing the conditions of reconnection. For this reason, the 
conductivity convection should probably have a destabilizing effect. 

Taking into account the magnetization parameter has approximately the same significance 
as a definite increase in R. This is evident directly from Eqs. (1.6) and the relation (1.4). 
An increase in the parameter ~ must weaken the effect of the ionic viscosity. It should be 
expected that the magnetization should evidently have an effect only when ~2U2(E) >> i. For 
the magnetic-field profile (i.i) this inequality, taking into account the smallness of E, is 

represented in the form 

3. The e q u a t i o n s  ( 1 . 3 )  c o n t a i n ,  even f o r  " m o d e r a t e "  v a l u e s  o f  R, R m, and ~ ,  sma l l  param- 
e t e r s  in front of the higher order derivatives of the functions v and h. Under these condi- 
tions, a special region is separated in the current layer near the neutral plane, which trans- 
forms into a narrow singular layer when R and R m increase. In addition, characteristic "vis- 
cous" regions exist near the walls. This problem is somewhat reminiscent of classical prob- 

lems in the theory of hydrodynamic stability of flows of a viscous liquid. 

Using the above-noted similarity between the tearing instability and the magnetic branch 
of the instability of Hartman's flow, we propose using the computational methods presented 
in [12, 13]. As is well known, the choice of the iteration scheme is not unique. In this 

work, we use the optimal variant 

v" = A~x A~2 A~n ' ( 3 .1 )  

\ h ' ]  Aal A32 Asa 

proposed in [13]. 

The starting linear system is integrated first at a small distance from the channel wall 
6o. The value of 6o was usually chosen to be equal to 10 -3 . Three solutions of the funda- 
mental system, satisfying the boundary conditions, are found. With the help of these solu- 
tions, at y = 1 -- 6o the initial data for the nonlinear system of equations, which the quanti- 
ties A~(i, j = i, 2, 3) from the relation (3.1) satisfy, are calculated. At y = 0, using 
the boundary conditions, we obtain from the relations (3.1) the characteristic equation 

f ( y )  = AlpAca - -  Al~A32 = 0 (3 .2 )  

for the even perturbations. The roots of the characteristic equation (3.2) were first found 
with the help of a grid of values of the function F. After finding the "reference" values of 
Y, the iterative method of secants, which is usually used in hydrodynamic problems [16], was 
used. The step with "motion along the continuous line" [16] was determined experimentally. 
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When the quantity k was changed, the step was most often chosen to be equal to 5%. An analy- 
sis of the behavior of the function F(Y) indicates the existence of only one root for the 

physical parameters studied here. 

The numerical calculations were performed on the ES 1022 computer (double precision was 

used). The eigenvalues were found with fixed accuracy (three significant figures). The numer- 
ical experiments were performed in a wide range of physical parameters: p = i-i0, k = 10 -4- 
i0, R = 1-10 S , R = 1=106 , ~ = 1-8. 

m 

4. We shall first study two-dimensional perturbations neglecting the nonuniformity, 
convection, and magnetization factors. In this case ~ z I, v ~ i, L z 0, K ~ 0. 

The numerical experiments show that when the ionic viscosity increases, the tearing in- 
stability can be significantly or even completely suppressed. 

Figure 1 demonstrates the stabilization of the tearing instability as the ionic viscosity 
increases for p : 2, R m = 103 (R = 103 (i); 200 (2); 40 (3); i0 (4)). At R = i0 the tearing 

instability is completely suppressed. 

The stabilization picture presented here is generally typical for small p. Thus for 
small p the ionic viscosity may affect the tearing mode. The stabilization observed here is 
not described, even qualitatively, by the elementary theory [3]. We note that the similarity 
criteria which we used are not exotic for experiments. For example, at a temperature of T ~ 
30 eV, n ~ 1016 cm -3, B ~ 103 G and Lo ~ i0 cm, we have R ~ 30. 

The ionic viscosity has an especially strong effect on the perturbations with small growth 
increment. As can be seen from Fig. i, even with a low ionic viscosity the long-wavelength 
perturbations with a small growth increment are suppressed. For this reason, when the ionic 
viscosity is taken into account, a long-wavelength instability boundary appears together with 
the short-wavelength instability boundary. It is interesting to note that when the ionic vis- 

cosity increases, not only do the growth increments decrease, but the region of wave numbers 

corresponding togrowing perturbations becomes narrower also. 

Figure 2 shows the effect of the ionic viscosity for p = 6, R = i03. (R = 103 (i); 200 m 
(2); !0 (3); 2 (4); 0.4 (5). The curves shown illustrate the changes occurring when p is In- 
creased. As p increases (for fixed R and R ), the increments grow~ The ionic viscosity, 
as before, has a significant stabilizing effect, but total stabilization appears for very 
small values of R~ For p = 6 all perturbations decay, if R < 0.4. But, for such small R, 
the starting equations (1.3) are, generally speaking, inapplicable. 

In the linear theory it is of greatest interest to determine the maximum increment 

y .  = m a ~  ?(k, Bin, R, p). 

The typical dependences y~(R) for p = 2 are shown in Fig. 3 (R m = i0 (i); 102 (2); l0 s 
(3))~ For very large R the ionic viscosity does not significantly affect the stability of 
the current layer. The limiting values of y, in the limit R § ~ are already actually achieved 
when R = 105 . In the cases studied in Fig. 3, for very large R, perturbations with R m = 102 
have the highest increments. However, when the ionic viscosity is increased, these increments 
drop rapidly and for sufficiently small R the perturbations with R = 103 have the largest " m 
increments. As can be seen from Fig. 3, these perturbations are completely stabilized only 
when the ionic viscosity has a significant magnitude. 
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The characteristic dependences y,(R) for p = 6 are presented in Fig. 4 (R = i0 (i); 102 
(2); 103 (3)). These curves demonstrate the changes occurring when p is increased. Although 
the increments grow significantly when p increases, the ionic viscosity has an effective stab- 
ilizing action even in these cases. 

We shall evaluate the role of three-dimensional perturbations, i.e., inclined perturba- 
tions with ~ < !. Let the values R m = Rmo and R = Ro be given. Then, it is evident directly 
from Eqs. (1.6) that the increments of the three-dimensional perturbations can be found if the 
solution of the two-dimensional problem is known for all R m < Rmo and for fixed ratio Pm = 

Rm/R = Rmo/R0 (the quantity Pm can be called the magnetic Prandtl number). Thus the starting 
three-dimensional problem reduces to an equivalent two-dimensonal problem. This property 
is analogous to Squire's transformation in hydrodynamics. 

Figure 5 shows the dependences y,(Rm) , constructed with p = 6 and Pm = 0.25, i, and 4 
(curves 1-3). The broken line shows the limiting dependence 7,(R ), obtained in the limit 
R § ~. It is evident from Fig. 5 that the effectiveness of the stabilization Increases as 

the quantity P decreases. 
m 

Let R m = Rmo be given. Then in order to determine the maximum increment it is necessary 
to find ~7,(Rm) directly from Fig. 5 for the values R m < Rmo. From here the slope angle of 
the wave vector of the perturbation with highest increment is also found at the same time. 
This analysis shows that straight perturbations (6 = i) have the highest increments. 

In real finite systems it is necessary to take into account the fact that the quantity 

k~ = k x > 2z/L x (L x is the dimension of the system along the x axis). 

5. In a nonuniform magnetized plasma, the increments undergo substantial changes, es- 

pecially in the long-wavelength region. For large R , however, in the range of wave numbers 
corresponding to the largest increments, the quantitles 7, vary quite insignificantly. This 
means that for large R m a narrow singular layer, within which the nonuniformity and magnetiza- 
tion factors can be neglected, is separated in the plasma. For comparatively small R , how- m 
ever, a distinct singular layer does not exist, so that the increments depend substantially 

on the nonuniformity, convection, and magnetization factors. 

Figure 6 shows the typical dependences Y(k), demonstrating the effect of the above-in- 
dicated factors with p = 6, R = 103 , R m = 103 �9 Curve 1 shows the dependence Y(k), obtained 
taking into account all factors, except the magnetization factor. The curve 2 was calculated 
taking into account the nonuniformity of the conductivity and the convection conductivity 
only. As also in the case when ionic viscosity is absent, the indicated factors significantly 
increase the increments in the long-wavelength region. The curve 3 represents the dependence 
Y(k), obtained taking into account only the magnetization factor with ~ = 5. Curve 5 was 
constructed taking into account only the nonuniformity of the density, and curve 6 was con- 
structed taking into account only the nonuniformity of the conductivity. For comparison, 

Fig. 6 shows the curve Y(k) for the uniform problem (curve 4). 

The nonuniformity of the density, in this case, has the weakest effect on the increments. 
We note that when the convection conductivity is taken into account (together with the nonuni- 
formity of the conductivity), complete stabilization does not occur in the long-wavelength re- 
gion. Thus in the plasma with a large gradient of the conductivity the effect of ionic viscos- 

ity is weakened. 
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The curves 7 ,(R) taking into account all nonuniformity, convection, and magnetization 
factors (9 = 5) with p = 2 are shown in Fig. 3 (R = i0 (i'); 102 (2'); 103 (3')). In this 
case complete stabilization does not occur, but f~r small R the increments are small. As is 
evident from Fig. 3, the smaller the value of Rm, the more rapidly the limiting values of y, 
are reached with large R. 

The cases of large p are shown in Fig. 4. Graphs of the functions y,(R) with p = 6 are 
shown here taking into account all nonuniformity and convection factors (R m = I0 (i'); 102 
(2'); 103 (3')). As in the preceding example, the magnetization parameter ~ = 5. 

Figure 5 shows the curves y,(R ) for fixed P (Pm = 0.25 (i'); 1 (2'); 4 (3')) taking in- 
. �9 m 

to account all convection and magnetization nonunzformity factors (9 = 5). The aggregate;ef- 
fect of these factors leads to a significant increase in the increments with comparatively 
small R m. However, for large Rm, the effect of these factors is insignificant. 

Let R m = Rmo be given. Moving along the curves studied in the direction of decreasing 
R from Rmo , we find the increments of the three-dimensional perturbations for different slope m 
angles. 

In the experiments, the plasma current layer with the parameters studied here exists for 
a time much longer than the magnitude of the inverse increment, determined in the limit R + 
in the static model. In this work it was established that the ionic viscosity can signifi- 
cantly decrease the increments of the rupture instability, and in certain situations complete- 
ly stabilize it. Thus, in order to explain the laboratory experiments performed with a quite 
dense and "moderately" heated plasma in a comparatively weak magnetic field, the ionic vis- 
cosity factor must be taken into account (together with other stabilizing factors), especially 
in those cases when the Reynolds number is comparatively small. For large R, however, the 
ionic viscosity has an insignificant effect. 

The authors thank Ao V. Timofeev and V. N. Shtern for useful discussion. 
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STRUCTURE OF AN AXISYMMETRICAL NONSTATIONARY WAVE OF ABSORPTION 

OF LASER RADIATION IN A TRANSPARENT DIELECTRIC 

S. P. Popov and G. M. Fedorov UDC 621.378.385 

Thermal laser breakdown of an initially transparent dielectric and the subsequent forma- 
tion of a plasma wave of absorption of radiation in it, in contrast to the well-studied analo- 
gous phenomena in gases [i], have been studied comparatively little. The reason for this is 
the large number of physical phenomena occurring, as well as the lack of the exact values of 
the quantities characterizing the state of the dielectric in the pre and post-breakdown states. 
A comparison of the experimental results [2, 3], theoretical estimates [4, 5], and one-dimen- 
sional numerical calculations [6, 7] indicates that the appearance and propagation of the ther- 
malabsorption wave is satisfactorily described by themechanism of nonlinear heat conduction 
with the appropriate coefficients of thermal conductivity and absorption of laser radiation. 
At this stage the main parameters of the absorption wave are determined: the propagation ve- 
locity, the average and maximum temperatures, and the thickness of the front. The motion of 
the plasma formed, the possibility of the occurrence of dissociation processes, the presence 
of defects which absorb radiation, the effect of the dielectric outside the thermal wave, and 

some other effects are not studied. 

This paper is concerned with the study of the effect of two-dimensionality on the thermal 
wave in a dielectric within the framework of the physical models developed previously for the 

one-dimensional and nonstationary cases [4, 6, 7]. 

The following system of equations was studied numerically: 

aT a aT I a OT aq ( i )  c-d-f= •215 +k(T)q, b-f=k(T)q, 

w h e r e  T i s  t h e  t e m p e r a t u r e ;  z ( T )  i s  t h e  c o e f f i c i e n t  o f  t h e r m a l  d i f f u s i v i t y ;  q i s  t h e  power  
d e n s i t y  o f  t h e  r a d i a t i o n ;  k ( T )  i s  t h e  a b s o r p t i o n  c o e f f i c i e n t ;  and  c i s  t h e  h e a t  c a p a c i t y  of  
t h e  medium,  a s s u m e d  t o  b e  i n d e p e n d e n t  o f  t h e  t e m p e r a t u r e .  The c o e f f i c i e n t s  X(T) a nd  k (T)  w e r e  

t a k e n  f r o m  [ 6 ] :  
k(r) = k0 + kl exp (--E/2T), • = x 0 + x l T  exp (--E/2T), 
k 0 = 0.25 cm -1, k 1 = 5"t04cm-1,  • t . 5 . t 0 - W / ( c m - d e g ) ,  

•  = 2.9"10-4 W/'(cm-deg), E = 44000~ c = 3.1 I / (cm3.deg) .  (2)  

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
15-17, March-April, 1985. Original article submitted November 24, 1983. 

162 0021-8944/85/2602-0162509.50 �9 1985 Plenum Publishing Corporation 


